If $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
1&1
\end{array}} \right]$ and $\det ({A^n} - I) = 1 - {\lambda ^n}\,,\,n \in N$ then $\lambda $ is

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

If the system of linear equations

$2 x+y-z=3$

$x-y-z=\alpha$

$3 x+3 y+\beta z=3$

has infinitely many solution, then $\alpha+\beta-\alpha \beta$ is equal to .... .

  • [JEE MAIN 2021]

Consider the system of linear equations

$-x+y+2 z=0$

$3 x-a y+5 z=1$

$2 x-2 y-a z=7$

Let $S_{1}$ be the set of all $\mathrm{a} \in {R}$ for which the system is inconsistent and $S_{2}$ be the set of all $a \in {R}$ for which the system has infinitely many solutions. If $n\left(S_{1}\right)$ and $n\left(S_{2}\right)$ denote the number of elements in $S_{1}$ and $\mathrm{S}_{2}$ respectively, then

  • [JEE MAIN 2021]

If ${a_1},{a_2},{a_3}.....{a_n}....$ are in $G.P.$ then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ is

  • [AIEEE 2005]

The value of a for which the system of equations ; $a^3x + (a +1)^3 y + (a + 2)^3 \, z = 0$ ,$ax + (a + 1) y + (a + 2)\, z = 0$ & $x + y + z = 0$ has a non-zero solution is :

$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ is equal to